HYPOKALEMIA

(Last updated 07/25/2019; Reviewers: Abhay Vakil, MD)

IMMEDIATE CONSIDERATIONS

FINDINGS

- Signs & Symptoms
 - Severe muscle weakness
 - Cardiac arrhythmias
 - Renal abnormalities
 - Glucose intolerance
- Lab Findings
 - o ECG changes
 - PVCs
 - ST segment depression
 - Prolonged QTc
 - T wave attenuation
 - Appearance of U waves
 - o Digoxin toxicity can lead to similar ECG findings

• Predisposing Conditions

- o GI loss of potassium
 - Vomiting
 - Diarrhea
 - Gastric tube drainage
 - Laxative overuse
- o Increased intracellular potassium shift
 - Metabolic alkalosis

- Increased insulin levels
- Marked increase in blood cell production
- Hypothermia
- Chloroquine intoxication
- Urinary loss
 - Diuretic use
 - Renal tubular acidosis
 - Hypomagnesaemia
 - Polyuria
 - Use of amphotericin B
 - Bartter's or Gitelman's syndrome
 - Primary mineralocorticoid excess
- Other causes
 - Sweating
 - Hemodialysis
 - Plasmapheresis

DIAGNOSTIC INTERVENTIONS

- Labs
 - o BUN
 - Creatinine
 - Magnesium level
 - о рН
 - Urinary potassium excretion
 - Spot vs 24 hour

Urine protein to creatinine ratio

Monitoring

- o ECG
- Serial serum potassium concentrations

THERAPEUTIC INTERVENTIONS

Medications

- Treatment for hypokalemia should be instituted at the earliest possible juncture,
 especially in the presence of ECG changes
 - Intravenous and/or oral potassium chloride administration should be instituted as soon as possible
 - Intravenous potassium replacement should be used in patients unable to tolerate oral mediations potassium and/or as an adjunct to oral potassium in cases of severe hypokalemia
 - Identify and treat the underlying cause of hypokalemia

MANAGEMENT AFTER STABILIZATION

- Follow-Up
 - o In patients with ECG changes, perform serial ECGs to monitor of correction

• Manage Complications

- The most common complication after potassium replacement is hyperkalemia from overcorrection
 - Close monitoring of potassium levels is essential
 - Relatively rapid intravenous potassium replacement may be required in DKA and hyperosmolar hyperglycemic states

CAUTIONS

- Severe hypokalemia requires exponentially larger replacement needs
 - o Use electrolyte replacement protocols
- IV potassium >10 meq per hour should be infused via central venous access

ALGORITHM TO DETERMINE CAUSE OF HYPOKALEMIA

REFERENCES & ACKNOWLEDGMENTS

Acknowledgement: John M. Litell, DO

- Rose BD, Post TW. Hypokalemia. In: Clinical Physiology of Acid-Base and Electrolyte
 Disorders, 5th ed, Rose BD, Post TW (Eds), McGraw-Hill, New York 2001. p.836.
- Mujais SK, Katz AL. Potassium deficiency. In: The Kidney: Physiology and
 Pathophysiology, Seldin DW, Giebisch G (Eds), Lippincott Williams & Wilkins, 2000.
 p.1615.16.
- Gennari FJ. Hypokalemia. N Engl J Med. 1998;339(7):451.
- Hamill RJ, Robinson LM, Wexler HR, Moote C. Efficacy and safety of potassium infusion therapy in hypokalemic critically ill patients. Crit Care Med. 1991;19(5):694.